(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
dfib(s(s(x)), y) →+ dfib(s(x), dfib(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [y / dfib(x, y)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
dfib(s(s(x)), y) → dfib(s(x), dfib(x, y))
Types:
dfib :: s → dfib → dfib
s :: s → s
hole_dfib1_0 :: dfib
hole_s2_0 :: s
gen_s3_0 :: Nat → s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
dfib
(8) Obligation:
TRS:
Rules:
dfib(
s(
s(
x)),
y) →
dfib(
s(
x),
dfib(
x,
y))
Types:
dfib :: s → dfib → dfib
s :: s → s
hole_dfib1_0 :: dfib
hole_s2_0 :: s
gen_s3_0 :: Nat → s
Generator Equations:
gen_s3_0(0) ⇔ hole_s2_0
gen_s3_0(+(x, 1)) ⇔ s(gen_s3_0(x))
The following defined symbols remain to be analysed:
dfib
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
dfib(
gen_s3_0(
+(
2,
*(
2,
n5_0))),
hole_dfib1_0) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
dfib(gen_s3_0(+(2, *(2, 0))), hole_dfib1_0)
Induction Step:
dfib(gen_s3_0(+(2, *(2, +(n5_0, 1)))), hole_dfib1_0) →RΩ(1)
dfib(s(gen_s3_0(+(2, *(2, n5_0)))), dfib(gen_s3_0(+(2, *(2, n5_0))), hole_dfib1_0)) →IH
dfib(s(gen_s3_0(+(2, *(2, n5_0)))), *4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
dfib(
s(
s(
x)),
y) →
dfib(
s(
x),
dfib(
x,
y))
Types:
dfib :: s → dfib → dfib
s :: s → s
hole_dfib1_0 :: dfib
hole_s2_0 :: s
gen_s3_0 :: Nat → s
Lemmas:
dfib(gen_s3_0(+(2, *(2, n5_0))), hole_dfib1_0) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s3_0(0) ⇔ hole_s2_0
gen_s3_0(+(x, 1)) ⇔ s(gen_s3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dfib(gen_s3_0(+(2, *(2, n5_0))), hole_dfib1_0) → *4_0, rt ∈ Ω(n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
dfib(
s(
s(
x)),
y) →
dfib(
s(
x),
dfib(
x,
y))
Types:
dfib :: s → dfib → dfib
s :: s → s
hole_dfib1_0 :: dfib
hole_s2_0 :: s
gen_s3_0 :: Nat → s
Lemmas:
dfib(gen_s3_0(+(2, *(2, n5_0))), hole_dfib1_0) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s3_0(0) ⇔ hole_s2_0
gen_s3_0(+(x, 1)) ⇔ s(gen_s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dfib(gen_s3_0(+(2, *(2, n5_0))), hole_dfib1_0) → *4_0, rt ∈ Ω(n50)
(16) BOUNDS(n^1, INF)